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Space-shifting digital holography with
dc term removal
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We describe a numerical space-shifting reconstruction approach in digital holography. This method is able to
remove the dc term in the reconstruction very effectively by utilizing the periodicity and the space-shifting
property of inverse discrete Fourier transform. Since the entire process does not need any additional holo-
grams and specific requirements to recording optics, this approach can be a really convenient, practical, and
widely effective way to remove the dc term from in-line or off-axis digital holography. © 2010 Optical Society
of America
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In digital holography, people have been searching for
an effective and practical approach to removing a dc
term or zero-order diffractive image from the holo-
gram reconstruction to acquire clear reconstructed
images. This is particularly necessary to the in-line
digital holography, as in which the reconstructed im-
age at the center is fully superposed with the zero-
order image. So far, a number of techniques on elimi-
nating the zero-order diffraction have been reported
[1–15]. However, most of them cannot be really an ef-
fective way to eliminate the zero-order image under
the in-line circumstance. Although the methods
based on the phase-shifting technique are able to re-
solve this problem effectively for both in-line and off-
axis circumstances [2–5], some specific optical re-
quirements in recording holograms, e.g., the use of
multiple holograms and phase elements, make it
hard to use these techniques in practical environ-
ments due to the complex of multiple hologram acqui-
sition and processing as well as the sensitivity of
phase variation to the environment.

Thus, here we describe what we believe to be a
novel numerical space-shifting reconstruction ap-
proach, with which the dc term in the reconstruction
can be removed very effectively, even if the image is
fully superposed with the zero-order diffraction. The
entire process is convenient in manipulation due to
the purely numerical processing without any addi-
tional requirements to the recording optics.

In digital holography, the hologram recorded with a
CCD can be characterized mathematically by [16]
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where �� ,�� is the hologram plane. h�� ,�� is the ho-
logram function generated by coherent superposition
of both object and reference waves. rect� · � and
comb� · � are the rectangle and the Dirac comb func-
tions, respectively. The symbol � denotes the convo-
lution operator. M and N are the horizontal and ver-
tical pixel numbers of the CCD, respectively. The
corresponding pixel sizes are �� and ��, �=k�� , �
= l��, k=0,1,2,3. . .M−1, l=0,1,2,3. . .N−1. 2��
and 2�� in the Dirac combs in Eq. (1) determine the
sampling frequencies for the hologram fringes.

With the Fresnel transformation of the hologram
reconstruction, the discrete complex amplitude,
��m ,n� of the reconstruction wave-field can be ob-
tained by inverse discrete Fourier transform (IDFT)
of R�k , l�hCCD�k , l�exp�−j� / ��d��k2��2+ l2��2�� [1].
The result can be finally expressed as
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where m=0,1,2, . . . ,M−1, n=0,1,2, . . . ,N−1. m�
and n� are the integers. �x ,y� is the image plane, x
=m�x , y=n�y. R�k , l� denotes the reference wave
for the reconstruction and d is the reconstruction dis-
tance. Equation (3) is obtained in terms of the prop-
erties of the convolution, the rectangle, and the comb

functions as well as their Fourier transforms.
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The above results of Eqs. (2)–(4) show that the re-
constructed image is characterized by Eq. (4) and
modulated by IDFT	A�k , l�
, i.e., Eq. (3). The latter
determines both the amplitude or gray value of every
image by sin c�m� /2�sin c�n� /2� and the image distri-
bution with the periods of �M /2 ,N /2� in horizontal
and vertical directions, respectively, by sin c�m
−m�M /2�sin c�n−n�N /2�. According to Eq. (3), the
image distribution including the zero-order diffrac-
tion is illustrated schematically in Fig. 1(a) by taking
the in-line geometry as an example, where the
shadow areas represent the periodic image distribu-
tion. The dc term (white square) is only located at the
center of the screen. The reconstructed image at the
center actually consists of four quarters that are in
the neighboring periods and form a whole image. The
zero-order diffractive image is fully superposed with
the reconstructed image at the center. According to
Eq. (3), the image at the center is of the maximum of
gray value and those at the corners are of the mini-
mum of gray value.

To remove the zero-order image, we shift the im-
ages with �M /2 ,N /2� in spatial domain utilizing the
space-shifting property of IDFT. This property of the
Fourier transform points out that if a function
g�x ,y�=IFT	G�	x ,	y�
, then

g�x + x0,y + y0� = IFT	G�	x,	y�exp�j	�x0 + y0��
,

�5�

where x0, y0 are the shifted distances corresponding
to M/2 and N/2 in horizontal and perpendicular direc-
tions, respectively here. Thus, the space-shifting ma-
nipulation can be achieved by multiplying a factor
exp�j	�x0+y0��, the discrete form of which is �−1�k+l,
with the right side of Eq. (2) before executing IDFT.
This manipulation can be expressed as

��m + M/2,n + N/2� = IDFT	�− 1�k+lA�k,l� · U�k,l�
.

�6�

In fact, the space-shifting manipulation is equiva-
lent to the position exchanges between the areas 1
and 3, 2 and 4 due to the periodicity of discrete Fou-
rier transform in a finite range. As a result, the four
quarters of the zero-order image are separated and
shifted to the corresponding corners accordingly, as
they are in different periods, while other images ex-

Fig. 1. (a) Periodic image distribution including the zero-
order image from the in-line geometry, (b) Position ex-
changes of the areas 1 and 3, 2 and 4 from the two-

dimensional space-shifting manipulation.
perience only the position exchanges. The above
analysis is illustrated by Fig. 1(b).

Although the zero-order diffractive image can be
moved away from the center with the space-shifting
processing due to its nonperiodicity, the recon-
structed image at the center becomes the darkest due
to the image exchange. This is obviously insufficient
for the image display. To resolve this problem, we
combine Fig. 1(a) with Fig. 1(b) using matrix multi-
plication. With this processing, not only is the dc
term eliminated very effectively from the screen but
also all periodically distributed images obtain a uni-
form gray value. This result can be interpreted by the
amplitude and distribution modulation factors of the
images in Eq. (3). In addition, if we combine the
above processing with the intensity-averaging tech-
nique [6], the zero-order noises from both object and
reference waves can be suppressed more sufficiently,
and thus a very clear reconstructed image should be
able to be obtained at the center for the in-line digital
holography provided that the twin image is elimi-
nated effectively as well.

The experiment is carried out by taking the in-line
geometry as an example. The optical setup for record-
ing the holograms is shown in Fig. 2, in which a fun-
damental mode laser source of model CNI MXL with
wavelength �=532 nm is used. The hologram is re-
corded using a complimentary metal-oxide semicon-
ductor (CMOS) with 1280�1024 pixels and 5.2 
m
�5.2 
m in pixel sizes. The recording distance, d is
215 mm. O.B. and R.B. are the object and the refer-
ence waves, respectively. The reference beam is a
plane wave normally incident to the CMOS. BS1 and
BS2 are the beam splitters.

The experimental results are shown in Fig. 3, in
which Fig. 3(a) is from the Fresnel transformation re-
construction without the use of dc term suppression
techniques. The images at the corners show the mini-
mum of gray value. The central image is covered
completely by the zero-order image due to the in-line
recording of the hologram. In order to exhibit the ef-
fect of the space-shifting reconstruction on the dc
term removal clearly, the twin image has been pre-
eliminated in another way in Fig. 3(a), as the twin
image removal has nothing to do with the space-
shifting processing and is not the topic that we are
concerning about here. The intensity-averaging tech-
nique is used in Fig. 3(b) to reduce the dc noises from
both object and reference waves, the result from

Fig. 2. Experimental setup of recording the in-line digital

holograms.
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which shows that this approach cannot remove the
zero-order image completely. The two-dimensional
space-shifting manipulation is finished in Fig. 3(c), in
which the zero-order image is divided into four quar-
ters and shifted to the corresponding corners and the
image at the center becomes the darkest after the im-
age exchange. Finally, the dc term is removed from
the screen very effectively by the combination of Figs.
3(b) and 3(c) using matrix multiplication, and all im-
ages obtain a uniform gray value as shown in Fig.
3(d). All these results are exactly consistent with our
theoretical prediction.

In conclusion, a numerical space-shifting recon-
struction approach in digital holography is described

Fig. 3. Experimental results from the in-line digital holog-
raphy, (a) the hologram reconstruction with the Fresnel
transformation without dc term suppression; (b) the use of
intensity-averaging technique; (c) the two-dimensional
space-shifting manipulation of the images; (d) the final re-
sult from the combination of (b) and (c) using matrix
multiplication.
here. With this method, not only can the zero-order
diffractive image be removed very effectively in the
reconstruction, but also all periodically distributed
images on the screen obtain a uniform gray value.
The experimental results are exactly consistent with
the theoretical analysis. Since this approach uses
purely numerical processing and so does not need
any of additional holograms and specific optical re-
quirements, it can be a really convenient, practical
and widely effective way to eliminate the dc term in
digital holography.
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