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Raman spectroscopy has been proved to be a promising diagnostic technique for 

various cancers detection. A major drawback for its clinical translation is the intrinsic 

weakness of Raman effects. Highly 

sensitive equipment and optimal 

measurement conditions are generally 

applied to overcome this drawback. 

However, these equipment are usually 

bulky, expensive and may also be easily 

influenced by surrounding environment. In 

this preliminary work, a low-resolution 

fiber-optic Raman sensing system is applied 

to evaluate the diagnostic potential of 

Raman spectroscopy to identify different 

bladder pathologies ex vivo. A total number 

of 262 spectra taken from 32 bladder 

specimens are included in this study. These spectra are categorized into 3 groups by 

histopathological analysis, namely normal bladder tissues, low-grade bladder tumors 

and high-grade bladder tumors. Principal component analysis (PCA) fed artificial 

neural network (ANN) are used to train a classification model for the spectral data 

with 10-fold cross-validation and an overall prediction accuracy of 93.1% is obtained. 

The sensitivities and specificities for normal bladder tissues, low-grade bladder 

tumors and high-grade bladder tumors are 88.5% and 95.1%, 90.3% and 98%, and 

97.5% and 96.4%, respectively. These results demonstrate the potential of using a 

low-resolution fiber-optic Raman system for in vivo bladder cancer diagnosis. 
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1 |  INTRODUCTION 

Bladder cancer is the ninth most frequently-diagnosed cancer 
throughout the world and ranks as thirteenth in terms of 
mortality rates [1]. Besides, it also has the highest recurrence 
rate of any type of cancer with over 50% recur within 5 years 
of initial diagnosis, and a significant proportion has a 
tendency of progression [2, 3]. Therefore, early and thorough 
detection and complete resection of bladder cancer are 
essential for improving prognosis for patients. The majority 

of bladder cancers (about 90%) are transitional cell 
carcinomas (TCC), which grow in bladder mucosa, and most 
of them are non-muscle invasive.  
 The gold standard for bladder cancer diagnosis is 
cystoscopy followed by histopathological examinations of 
biopsies. This method is highly subjective, which means the 
decision is made depending on pathologists’ experience. And 
it also has a certain extent of both intra- and inter-observer 
variability. Currently, transurethral resection of bladder 
tumors (TURBT) is the primary procedure for early bladder 
cancer diagnosis and treatment. Unfortunately, conventional 
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white light-guided cystoscopy (WLC) has a low sensitivity to 
small papillary tumors, carcinoma in situ (CIS), and even low 
grade tumors with different stages. Photodynamic diagnosis 
(PDD) significantly enhances the sensitivity from 75% to 
95% (approximately) compared with WLC [4, 5]. However, it 
suffers from a high false positive rate which hinders its full 
implementation in clinical environment. Additionally, the 
need for long-term surveillance after TURBT makes bladder 
cancer to be one of the most expensive disease to manage [6]. 
Therefore, an economical and objective method that can 
provide high sensitivity and specificity to bladder cancer 
detection is strongly needed. 
 To meet the unmet clinical requirements of bladder cancer 
diagnosis, various methods including imaging techniques [7-
10] and spectroscopic techniques [11-13] have been explored 
by groups over the last decades. Particularly, Raman 
spectroscopy has an outstanding performance and has been 
applied to cancer diagnosis in various organs [14-19]. It is 
capable of interrogating and characterizing chemical 
compositions of tissues at a molecular level with minimal 
disturbance. It is an inelastic scattering process of incident 
laser light, where a small portion of scattered photons 
experience shifts in frequency. Measuring the frequency-
shifted photons results in a spectrum of Raman peaks, which 
provides fingerprint information of specific chemical bonds. 
Non-destructiveness and without a need of sample 
preparation make it very suitable for in vivo on-line bladder 
cancer diagnosis. 
 A critical disadvantage of Raman spectroscopy is that the 
Raman effect is so weak that only 1 in 10

6
 to 10

8
 photons 

undergoes Raman scattering, which makes it extremely 
difficult to obtain high quality spectra using low laser power 
and short integration time to meet the requirements of in vivo 
applications. Normally, this drawback is overcome by 
employing highly sensitive and accurate equipment and 
conducting measurements under optimal conditions. These 
equipment are usually bulky, expensive and difficult to 
maintain, which may contribute to additional cost to patients.   
 Schie et al. [20] proved that spectral resolution of Raman 
spectra have insignificant influence on the classification 
results of three cancer cell lines, which indicates that the 
instruments used for biological Raman applications can be 
considerably simplified and the cost can be significantly 
reduced. The long-term goal of our research is to realize the 
clinical implementation of in vivo online bladder cancer 
diagnosis using fiber-optic Raman technique. In this 
preliminary study, instead of using bulky and expensive 
instruments, the feasibility of utilizing a relatively low-
resolution fiber-optic Raman system for bladder cancer 
identification is examined ex vivo. Combined with principal 
component analysis (PCA) and artificial neural network 
(ANN), this system is used to discriminate normal bladder 
tissue from low-grade and high-grade TCC of bladder. 
Importantly, comparable or even better performance in terms 
of specificity and sensitivity of classifying different 
pathological groups to those of previous studies using large 
and heavy instruments is obtained.  
 

2 |  MATERIALS AND METHODS  

The data collection was conducted at the General Hospital of 
Shenyang Military with ethics approval to collect bladder 
tissue samples for Raman spectroscopy experimentation from 
the Ethics Committee of the same hospital. Fully informed 
consent was obtained from patients prior to sample collection. 
All the data processing algorithms were developed in Matlab 
2017b (The Mathworks Inc., USA) with neural network 
toolbox. 

2.1 | Sample collection and preparation 

A total number of 32 bladder biopsy specimens from 10 
patients were collected at cystoscopic procedures including 
TURBT. After resection from the patients, the samples were 
immediately placed in a 3ml cryovial and snap frozen in 
liquid nitrogen. Histological sections were cut from each 
sample and stained with haematoxylin and eosin (H&E) for 
standard histopathological analysis. The remaining samples 
were retained in liquid nitrogen until Raman spectroscopic 
measurements. All H&E-stained tissue sections were 
examined by an experienced histopathologist without 
information on patients’ history and Raman spectroscopy. 
The samples were categorized into three groups according to 
their grades: normal bladder tissue, low grade bladder tumor 
and high grade bladder tumor. These three groups are 
commonly identified bladder pathologies by histopathological 
analysis in the General Hospital of Shenyang Military. 
TABLE 1 shows a summary of sample number and spectra 
taken from each pathological group. 

TABLE 1 The number of samples and spectra taken from each 

pathological group. 

Pathological group Number of samples Number of spectra 

Normal 11 78 

Low-grade TCC 7 62 

High-grade TCC 14 122 

Total 32 262 

2.2 | Raman spectroscopy procedures 

The Raman spectra were measured ex vivo with a portable 
fiber-optic Raman system (Figure 1(a)). The system consists 
of four major parts: a 785 nm continuous laser source (FC-D-
785, CNI Optoelectronics Technology Co., Ltd, Changchun, 
China), a handheld fiber-optic Raman probe (Emvision LLC, 
Florida, USA), a compact spectrometer (TG-Raman 785-1100 
nm, CNI Optoelectronics Technology Co., Ltd, Changchun, 
China) coupled with a Hamamatsu S11510 CCD detector 
(Hamamatsu Photonics, Hamamatsu, Japan), and a computer. 
The laser source is able to provide up to 450 mW stable laser 
light after several minutes warmup. The probe is a 7-around-1 
design with one laser delivery fiber surrounded by seven 
collection fibers. All fibers in the probe are 300-micron core 
low-OH, 0.22 NA fibers. At the distal end, a band-pass filter 
is placed in front of the excitation fiber and a ring-shaped 
long-pass filter is placed in front of the collection fibers. The 
probe with a 2.1 mm outer diameter illuminates a 0.5mm-
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diameter area and samples up to a depth of ~ 1mm. In order 
to further eliminate the Rayleigh scattering light collected by 
the collection fiber, an additional long-pass filter (BLP01-
785R-25, Semrock, IDEX Health & Science, LLC, New York, 
the USA) is added before the collected signal goes into the 
spectrometer. Instead of using a bulky spectrometer with high 
precision and resolution, a compact spectrometer which 
provides a spectral resolution of ca. 36 cm

-1
 was used. The 

CCD detector has a pixel size of 14 × 14 µm and has a 
quantum efficiency of 40% at 1000nm. Although the spectral 
resolution is not very high, it can provide the whole range 
spectrum (from 400 cm

-1
 to 3500 cm

-1
) in one measurement 

without the need of moving gratings.  
 Before taking Raman measurements, samples were taken 
out from liquid nitrogen and passively thawed to room 
temperature (about 25 °C). This technique has been proved to 
be efficient to preserve the biochemistry of samples close to 
their original states in live tissue [21]. Samples were carefully 
placed on a small metal plate and orientated with the 
urothelium facing up to receive incident laser beam. This 
placement imitates in vivo measurement geometry. Samples 
were kept wet in normal saline during measurement. Spectra 
were taken by placing the probe head in slightly contact with 
samples. Figure 1(b) illustrates the measurement geometry. 
The collection time for each spectrum is 1s and the laser 
power at the sample is about 150mW. According to the size 
of each sample, two to five measurement points were 
randomly selected and two spectra were taken at each point. 
As a result, a total number of 262 spectra were obtained. 

2.3 | System calibration and data pre-processing 

The wavenumber response of the spectrometer was calibrated 
using an Oriel 6031 pencil style calibration lamp (Newport 
Corp., California, the USA). Six emission lines were carefully 
chosen to be resolvable by the spectrometer without any 
confusion to calculate the calibration coefficients. After 
calibration, all the spectra were grouped according to their 
histopathological analysis results and then preprocessed 
through the following procedure: 

1) remove spikes caused by cosmic ray effect or 

instrument defects by performing linear interpolation 
at suspicious locations; 

2) reduce random noise using wavelet denoising 
3) perform standard normal variate (SNV) to transform 

the measured spectra to a similar scale 
4) apply airPLS [22] to remove baseline 
5) perform extended multiplicative signal correction 

(EMSC) [23] 

2.4 | Multivariate analysis 

The preprocessed data were then used to train a diagnostic 
classification model which is capable of identifying different 
pathologies. Principal component analysis (PCA) was first 
applied for data compression. PCA is an unsupervised 
multivariate analysis method that creates a new set of 
orthogonal principal components (PCs) to represent the 
original data matrix. The order of PCs indicates their 
explained proportion of variance. PC1 explains the biggest 
proportion of variance, PC2 explains the second biggest, etc. 
By selecting the first several PCs which can explain a most 
part of data variance (e.g. 90%), PCA is able to realize data 
compression. A two sample student t test was applied on the 
selected PCs to identify which one or several have the 
diagnostic significance for bladder cancer identification. Then 
the PCs with diagnostic significance were used to train a two-
layer feedforward artificial neural network (ANN). ANN is a 
powerful self-adaptive and data-driven pattern recognition 
method with the ability of capturing nonlinear and complex 
underlying characteristics of data under investigation. 
Another reason for choosing ANN as the model training 
method in this study, rather than other widely used 
classification method such as linear discriminant analysis 
(LDA) and support vector machine (SVM), is that after 
dozens of trials ANN constantly outperformed LDA and 
SVM in terms of classification accuracy (results not given). 
Ten-fold cross-validation was used to evaluate the PCA-ANN 
model and the model training parameters are listed in TABLE 
2. Unlike conventional 10-fold cross-validation which usually 
divides the original dataset into only a training set and a 
validation set, the cross-validation procedure in this study 

 

FIGURE 1  (a) The low-resolution fiber-optic Raman sensing system used in this study (an additional long-pass filter stage is added 

before the collected signal goes in to the spectrometer); (b) probe placement during measurement. 

FIGURE 1 
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was done by dividing the original data set into a training set, a 
validation set and a test set. More specifically, the cross-
validation procedure was performed through the following 
steps: 

1) randomly divide the original spectral datasets into 10 
subsets; 

2) the first and second subsets were assigned as 
validation set and test set, respectively. And the 
remaining 8 subsets were assigned as training set; 

3) train the ANN model; 
4) increase the indices of validation set and test set by 1 

and the remaining 8 subsets were assigned as 
training set; 

5) repeat steps 4) and 3) until all subsets have been 
assigned as validation set and test set once; 

6) select the model with the best performance as the 
final PCA-ANN model. The best performance is 
decided by the mean squared prediction error of 
validation set. 

TABLE 2 Training parameters of ANN. 

Parameters Value 

Number of hidden neurons 10 

Training function Scaled conjugate gradient 

Performance function Mean squared error(MSE) 

Maximum iteration 100 

Validation checks 6 more iterations after local minima 

Cross-validation 10-fold cross-validation 

3 |  RESULTS AND DISCUSSION 

The average spectra of each group after preprocessing are 
shown in Figure 2(a) and the offset mean spectra ± standard 
deviation of each group are provided in Figure 2(b). To 
illustrate how strong the fluorescence background in the raw 
data is, example original spectra of the three groups are 
provided in Figure S1 (Supplementary Information). Due to 
low spectral resolution of the spectral acquisition system, the 
number of recognized Raman peaks are very limited. Peaks 
close to each other are very likely to be overlapped and 
recognized as a bigger peak. For example, the wide peak in 
the range between 1500 cm

-1
 and 1700 cm

-1
 may be an 

overlap of 4 smaller peaks (1546, 1576 1608 and 1654 cm
-1

) 
and the peak in the range of 1000 cm

-1
 to 1100 cm

-1
 might be 

a combination of 1052 cm
-1

 and 1077 cm
-1

 [24]. The mean 
spectra of the three classes exhibits very similar profile. 
However, significant differences in terms of peak locations 
and peak intensities can still be observed. The difference 
spectra between every two groups of the three are given in 
Figure 3 where clear differences can be observed. Tentative 
assignments of major peaks shown in Figure 2 and 3 are 
given as follows[25-30]: 481 cm

-1
(glycogen), 621cm

-1
 (S-S 

disulfide stretch in proteins), 683 cm
-1

 (C-S twist, tyrosine), 
755 cm

-1
 (Symmetric breathing of tryptophan), 830 - 853 cm

-1
 

(tyrosine), 937 cm
-1

 (C-C stretching in protein), 1003 cm
-1

 
(symmetric ring breathing of phenylalanine), 1077 cm

-1
 (C-C 

and C-O in lipids and glucose), 1220-1300 cm
-1

 (amide III, C-
N stretching mode of proteins, collagen), 1315 cm

-1
 (CH3CH2 

twisting mode of lipids and collagen), 1342 cm
-1

 (DNA/RNA 
and C-H deformation of proteins and tryptophan), 1445 cm

-1
 

(CH2 bending, collagen/phospholipids), 1585 cm
-1

 
(phenylalanine), 1640 cm

-1
 (amide I, proteins), 2817 - 2875 

cm
-1

 (CH2/CH3 symmetric stretching of lipids), and 2929 – 
2940 cm

-1
 (CH2 asymmetric stretch). 

 In Figure 2(a), some bands show clear progressive trend, 
either increasing or decreasing, from normal bladder tissue to 
high-grade bladder tumor. For example, the bands at 621 cm

-1
, 

755 cm
-1

, and 1220-1300 cm
-1

. Some bands at 481 cm
-1

, 1077 
cm

-1
, 1445 cm

-1
, and 1640 cm

-1
, do not show a clear trend. 

Some reasons can be used to explain this phenomenon. Firstly, 
the high-volume probe has a sampling depth up to ~1mm. A 
considerable proportion of Raman signal may be derived 
from the submucosa and muscle layer. The collected Raman 
spectra in some way reflect the invasiveness of cancerous 
cells which is not taken into account in this study. Further 
study to find the influence of invasive stages of bladder 
cancer on the collected spectra using the same low-resolution 
system still needs to be done in the future. This can be done 
by classifying the samples according to both their stages and 
grades information. Secondly, the parameters used in the pre-
processing step have a great impact on the resulting mean 
spectra. For example, a parameter λ that controls the penalty 
item in airPLS needs to be tuned by the user (set as 10

8
 in this 

 

FIGURE 2 Comparison of bladder tissue classes: (a) mean 

spectra of each class; (b) mean ± standard deviation of each class 

(offset) 
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study). Adjusting this parameter may lead to a huge 
difference on the mean spectra.  

 

FIGURE 3 Difference spectra between every two pathological 

groups: (a) low grade tumor minus normal bladder tissue, (b) high 

grade tumor minus normal bladder tissue and (c) high grade tumor 

minus low grade tumor. 

 PCA was then applied on the preprocessed spectral data 
for dimensionality reduction. After calculation, the first 43 
PCs can explain over 90% of total variance in the data matrix 
and were selected for further analysis. A PCA score plot of 
normal, low-grade tumor and high-grade tumor along PC1, 
PC2 and PC3 is presented in Figure 4.  Each colored point in 
the scatter plot represents a single spectrum. PC1 explained 
the most part (about 33%) of total variance of the spectral 
data, while PC2 and PC3 explained about 18% and 8%, 
respectively. As seen in Figure 4, spectra groups into three 
classes with little confusion according to corresponding 
pathologies as expected. More precisely, most spectra of 
normal bladder tissue (blue crosses) fall into the range where 
PC1 ∈ [-1, 1], PC2 ∈ [-0.5, 1] and PC3 ∈ [-0.5, 0.5]; spectra 
of low grade tumor tissues (red circles) all have positive PC2 
values; most spectra of high-grade tumor tissues (pink 
triangles) fall into the range where PC1 ∈ [-1, 1], PC2 ∈ [-1. 
0], and PC3 ∈  [-0.5, 1]. The spectra of low grade bladder 
tumor have a more dispersed distribution and may have some 
confusions with the other two groups. This can be explained 
by the characteristics of low-grade bladder tumors. Low-
grade tumors look more like normal bladder tissues than 

high-grade tumors. In addition, grade 1 tumors are low-grade 
tumors and grade 3 tumors are high-grade tumors whereas 
Grade 2 tumors can be categorized into either low grade or 
high grade. 

 

FIGURE 4 Score plot of normal, low-grade and high-grade tumor 

tissue along the first three PCs. The numbers in parentheses indicate 

the explained variance by the corresponding PC. 

 A two-sample student t test was performed on the selected 
PC scores to extract the ones with significance in 
distinguishing different bladder pathologies (p<0.05). Figure 

5 shows the t test results (1-p value) along the first 43 PCs. 
Only the first and second PCs show the ability to identify 
every bladder pathology. Other PCs either have no difference 
in identify each pathology or can only distinguish two of the 
three groups. In order to preserve the most useful information, 
PCs with significance in differentiating any two groups were 
found and examined. PCs with indices of 1, 2, 3, 4, 5, 6, 9, 12, 
14, 16, 21, 24, 32, and 35 were selected and their 
corresponding PC loadings are provided in Figure S2. Clear 
spectral vibrations can be found in the first six PC loadings. 
Noise is the major component in the remaining selected PC 
loadings. As a result, the first six PCs were assigned as 
significant PCs and fed into an ANN training model. 
 The supervised ANN model applied in this study is a two-
layer feedforward neural network with backpropagation 
training. After several trials with different number of hidden 
neurons set in the first layer, the model performance in terms 
of overall accuracy did not change significantly. So, the 
number 10 was employed. The structure of the network is 
illustrated in Figure 6 where W represents applied weights 
and b represents bias vector. The inputs of the network are the 
14 significant PCs and the outputs are the pathological 
predictions of each spectrum. The training targets are the 
histopathological analysis results of each bladder tissue 
samples. 
 Ten-fold cross-validation was performed to evaluate the 
performance of the PCA-ANN models and select the one with 
the best performance as the final model. Mean squared error 
(MSE) of validation set was chosen as the performance 
evaluation criterion for each model. The model with the 
lowest MSE was selected as the final model. Six more 
iterations in the model training process were performed after 
a local minimum was reached. If no better results were found, 
the local minimum would be considered as the best 
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performance for the model and the iteration procedure 
stopped. The final model’s performance is presented in 
Figure 7. The point of intersection of the two dashed lines 
indicates the best validation set performance which is found 
at iteration 13. Before the best validation performance is 
reached, the MSE values of the three sets show similar 
gradually decreasing trend and no significant increase is 
observed in the performance of test set (red line). This 
behavior indicates that there is no or little over-fitting in the 
final model. 

 

FIGURE 5 Two-sample student t test results between groups (value 

1-p) 

 

FIGURE 6 The architecture of the two-layer feedforward ANN with 

W and b represents weight vector bias vector applied. 
 The confusion matrices of training set, validation set, test 
set and overall data are listed in TABLE 3. The confusion 
matrix of training set shows that there are 15 
misclassifications of 210 spectra, which gives a 92.9% 
classification accuracy. For the validation set, only 1 
spectrum of normal tissue was wrongly categorized into high-
grade tumor and other spectra within this set were all 
correctly classified (96.2% classification accuracy). Two 

misclassifications were found in the test set leading to an 
accuracy of 92.3%. The overall classification accuracy is 
93.1%. Those misclassifications may be attributed to 
spectroscopy-histopathology mismatches. For example, a 
spectrum might be taken at a normal bladder site on the 
sample which was labeled as high-grade tumor tissue by 
pathological analysis. 

 

FIGURE 7 Performance of the final ANN model 

TABLE 3 Confusion matrices of training set, validation set, test set 

and overall data, where Normal represents normal bladder tissue, 

Low represents low-grade tumor, and High represents high-grade 

tumor 

ANN model predictions Pathology analysis  

  Normal Low High 

Training set 

Normal 52 4 3 

Low  4 45 0 

High 4 0 98 

Validation 

set 

Normal 11 0 0 

Low 0 5 0 

High 1 0 9 

Test set 

Normal 6 2 0 

Low 0 6 0 

High 0 0 12 

Overall 

Normal 69 6 3 

Low 4 56 0 

High 5 0 119 

 These classification results that were translated to 
sensitivity and specificity for each bladder tissue group are 
shown in TABLE 4. The sensitivities and specificities are all 
over 88.5% for all the three groups which indicates that the 
PCA-ANN classification model has a good performance in 
recognition of these three types of bladder tissues. To be 
more exact, the sensitivity and specificity for normal bladder 
tissues are 88.5% and 95.1%, respectively. For low bladder 
tumor tissues, it has a sensitivity of 90.3% and a specificity of 
98%. The sensitivity for high-grade tumor tissues is the 
highest (97.5%) as expected. This can be explained by the 
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distinct features of high-grade tumors. Unlike low-grade 
bladder tumors that are usually well differentiated, a high 
grade tumor looks very abnormal in appearance and is poorly 
differentiated. 
 To further elucidate the performance of the low-resolution 
fiber-optic Raman system combined with the PCA-ANN 
model, the receiver operating characteristics (ROC) curves 
for each pathological group are also examined (Figure 8). 
The solid grey line represents a random model with 50% 
accuracy. For a perfect prediction model, the ‘elbow point’ of 
each curve should be at the top left corner and the area under 
curve (AUC) should be 1. As can be easily recognized, the 
ROC curves for the three groups are very close to perfect 
classification. The AUCs are 0.9695 for normal bladder tissue 
(blue line), 0.9868 for low-grade bladder tumor (green line) 
and 0.9931 for high-grade bladder tumor (red line).  
 Although the spectral resolution of the fiber-optic Raman 
sensing system in this study may not be comparable with that 
of studies done by other research groups, the results above 
have demonstrated the effectiveness of the low-resolution 
system together with PCA-ANN classification in identifying 
normal bladder tissues, low-grade bladder tumors and high-
grade bladder tumors.  
TABLE 4 Sensitivity and specificity for each pathological group. 

Pathological group Sensitivity Specificity 

Normal 88.5% 95.1% 

Low-grade TCC 90.3% 98% 

High-grade TCC 97.5% 96.4% 

Overall accuracy 93.1% 

 

FIGURE 8 Receiver operating characteristic (ROC) curves of the 

PCA-ANN model for each pathological group. The blue line stands 

for normal bladder tissue and the AUC is 0.9695; the green line 

stands for low-grade bladder tumor and the AUC is 0.9868; the red 

line stands for high-grade bladder tumor and the AUC is 0.9931; the 

solid grey line stands for a 50%-accuracy random model. 

4 |  CONCLUSION 

In conclusion, this preliminary study demonstrates the 
potential of using a relatively low-resolution fiber-optic 
Raman sensing system for bladder cancer diagnosis. A total 
number of 32 bladder tissue samples including normal 

bladder tissues, low-grade bladder tumors and high-grade 
bladder tumors were included in this study. With the help of a 
specially trained and cross-validated PCA-ANN classification 
model, an overall diagnostic accuracy of 93.1% for the three 
types of bladder tissue was obtained. The sensitivities and 
specificities for normal bladder tissues, low-grade bladder 
tumors and high-grade bladder tumors are 88.5% and 95.1%, 
90.3% and 98%, and 97.5% and 96.4%, respectively. A 
disadvantage of this study is the limited number and diversity 
of samples. A bigger and more comprehensive sample 
collection may have influence on the PCA-ANN model’s 
performance. Although this study proved the potential of 
applying low-resolution Raman system for bladder cancer 
diagnosis, further research works are still strongly needed to 
translate this technique to clinical applications.  
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Figure S1 Example original spectra of the three group. 
Figure S2 Loadings of PCs with diagnostic significance. 
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