XY Plotter V2.0 User Guide
– mDraw Version 1.1 & Benbox 3.7.99
Table of Content

I. Before Get Start .. 1
II. Part List .. 2
III. Introduction ... 3
 1. XY Plotter V2.0.. 3
 2. mDraw ... 3
IV. How to Assemble XY Plotter V2.0 ... 4
V. Software .. 28
VI. Use mDraw Software ... 29
 a). Introduction to mDraw.. 29
 b). Installation .. 29
 c). Button Function in Main UI .. 30
 d). Setting .. 31
VII. Use Benbox Software .. 34
 a). Benbox features introduction .. 34
VIII. Software downloading .. 34
 a). Benbox software installation ... 34
 b). Main interface function ... 36
IX. Meaning of each parameter in the Benbox software ... 37
 a). Parameter setting area ... 37
 b). Drawing editing area .. 37
 c). Operating Area .. 38
 d). Preview area .. 38
X. Software initialization setting ... 39
 a). Check connections ... 39
 b). Upgrade the firmware (Require to burn when using for the first time) 39
 c). Calibrate the setting of pen-agency and pen up and down parameters 40
XI. Vector DXF drawing example - Iron Man Drawing ... 42
XII. FAQs .. 43
XIII. Thanks! ... 46
I. Before Get Start

1. Hardware:
 XY Plotter V2.0 Kit

2. XY Plotter V2.0 Assembly instructions

3. Software:
 a. Must have:
 mDraw for Windows
 mDraw for Mac
 Benbox 3.7.99
 Inksape
 b. Optional:
 Arduino IDE
 Makeblock Windows Mainboard Driver (PS: Please download driver for Mac OS system at our website)

Note: mDraw is best for Makeblock Orion mainboard, it also supports Arduino Leonardo/Uno mainboard, for which need to upload firmware by Arduino IDE firstly. Please download the firmware at Here.

Tip 1
For the accuracy of your XY Plotter V2.0, please strictly follow the assemble instruction, and carefully adjust your robot. Please pay attention to the position of axles, transmission parts, servo arm, and the levelness of robot.

Tip 2
Pictures in this article is only for reference. Specifications and software are subject to change without notice, please pay attention to our website http://www.makeblock.cc.
II. Part List

<table>
<thead>
<tr>
<th>No.</th>
<th>Part</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beam 0824-16</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Beam 0824-48</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Beam 0824-80</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Beam 0824-96</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Beam 0824-112</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Beam 0824-496</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Beam 0808-072</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Beam2424-504</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Plate 3x6</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Belt Connector</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Cuttable Linkage 3</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Bracket 3x3</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Bracket U1</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>42BYG Stepper Motor Bracket</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>9g Micro Servo Pack</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>42BYG Stepper Motor</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Timing Pulley18T</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>Open-end Timing Belt (1.3m)</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Threaded Shaft 4x39mm</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>D Shaft 4x56mm</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Linear Motion Shaft D4x80mm</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Linear Motion Shaft D4x512mm</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Linear Motion Shaft D8X496mm</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>Shaft Collar 4mm</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>Flexible coupling 4x4mm</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Linear Motion Slide Unit 8mm</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>Flange Bearing 4x8x3mm</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>Cross &2.5mm HEX Screwdriver</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>HEX Allen Key 1.5mm</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>Wrench 7mm&5mm</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Screw M4x8</td>
<td>36</td>
</tr>
<tr>
<td>32</td>
<td>Screw M4x14</td>
<td>30</td>
</tr>
<tr>
<td>33</td>
<td>Screw M4x16</td>
<td>28</td>
</tr>
<tr>
<td>34</td>
<td>Screw M4x22</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td>Screw M4x30</td>
<td>18</td>
</tr>
<tr>
<td>36</td>
<td>Countersunk Screw M3x8</td>
<td>10</td>
</tr>
<tr>
<td>37</td>
<td>Headless Set Screw M3x5</td>
<td>26</td>
</tr>
<tr>
<td>38</td>
<td>Nut M4</td>
<td>50</td>
</tr>
<tr>
<td>39</td>
<td>Plastic Rivet R4060</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>Plastic Rivet R4100</td>
<td>6</td>
</tr>
<tr>
<td>41</td>
<td>Plastic Ring 4x7x2mm</td>
<td>20</td>
</tr>
<tr>
<td>42</td>
<td>Nylon Cable Ties</td>
<td>30</td>
</tr>
<tr>
<td>43</td>
<td>Rubber band</td>
<td>5</td>
</tr>
<tr>
<td>44</td>
<td>Gasket</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>Me Baseboard 1.0</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>Me Stepper Motor Driver</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>Me Micro Switch B</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>Me RJ25 Adapter</td>
<td>3</td>
</tr>
<tr>
<td>49</td>
<td>Wall Adapter Power Supply - 12VDC</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>6P6C RJ25 cable-20cm</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>6P6C RJ25 cable-35cm</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>6P6C RJ25 cable-50cm</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>USB 2.0 A-Male to Micro B-Male Cable</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Micro Switch Cable-90cm</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>Base Bracket B</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>XY QR Code Card</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Packing Case</td>
<td>1</td>
</tr>
</tbody>
</table>
III. Introduction

1. XY Plotter V2.0

XY Plotter is a drawing robot based on Makeblock platform, precision is 0.1mm, working area is 310mm×390mm. Besides the well-designed hardware, we designed a software for XY Plotter 2.0 – mDraw.

2. mDraw

mDraw is a host computer software originally designed for 4-in-1 drawing robot mDrawBot, we developed the compatibility with XY Plotter 2.0 Servo mode and Laser mode.

mDraw Main UI
IV. How to Assemble XY Plotter V2.0

Step 1

2 x Beam 0624-496
2 x Beam 2424-504
2 x Linear Motion Shaft 6x6x96mm
4 x Linear Motion Slide Unit 8mm
4 x Plate 3 x 8
8 x Screw M4 x 14
12 x Screw M4 x 30
8 x Nut M4
Step 2

2 x Linear Motion Shaft DBX196mm
2 x Linear Motion Shaft DBx80mm
1 x 42BYG Stepper Motor Bracket V2.1
1 x 42BYG Stepper Motor
4 x Beam 0824 46
4 x Beam 0824 96
2 x Beam 0824 112
2 x Linear Motion Slide Unit 8mm
2 x Flange Bearing 48x3mm
4 x Headless Set Screw M3x5
2 x Nut M4

5 x Screw M4x6
16 x Screw M4x14
2 x Screw M4x36
8 x Screw M4x22
4 x Countersunk Screw M3x8
2 x Shaft Collar 4mm
2 x Timing Pulley 18T
1 x Bracket U1
Step 3

1 x Micro Switch Button

1 x LS Bracket

2 x Cross Recessed Pan Head
 Tapping Screws M4x8

2 x Screw M4x8
Step 4

1x Linear Motion Shaft D4x512mm
2x D Shaft 4x60mm
4x Bracket U1
4x Timing Pulley 18T
7x Shaft Collar 4mm
8x Flange Bearing 6x8x3mm
11x Headless Set Screw M3x6
8x Screws M4×6
Step 5

- 2 x Open-end Timing Belt (L 3m)
- 2 x Belt Connector
- 4 x Cuttable Linkage 3
- 4 x Screw M4 x 16
- 4 x Screw M4 x 8
- 8 x Nut M4
Step 6

1×Bracket 3×3
1×Belt Connector
1×Open-end Timing Belt (1.3m)
2×Screw M1×16
3×Screw M1×8
3×Nut M4
Step 7

1 x 42BYG Stepper Motor
3 x 42BYG Stepper Motor Bracket V2.1
1 x Beam OB24 322
3 x Flexible coupling 4x4mm
3 x Plate 3 x 6
9 x Screws M3 x 16
6 x Nut M4
4 x Screw Countersunk M3 x 8
4 x Headless Set Screw M3 x 5
1 x Plastic Ring 4x7x2
The distance from the edge 52.5±0.5 mm

Note: Screw M4*14 and threaded slot
Step 8

1 x Pen/Marker (provide for oneself)
1 x Beam 0824 80
2 x Beam 0828 16
1 x Beam 0808 72/80
1 x Micro Servo Fixed Slices
1 x 8g Micro Servo
1 x Threaded Shaft 4x39mm
2 x Screw M4 x 30
2 x Screw M4 x 15
2 x Screw M4 x 8
2 x Screw M2 x 10
3 x Nut M4
2 x Nut M2
1 x Screw Headless M3 x 5
1 x Shaft Collar 4mm
3 x Plastic Ring 6x7x2
Step 9

8 x Micro Switch Button

3 x LS Bracket

8 x Cross Recessed Pan Head Tapping Screws ST2.5×6.5

2 x Screw M4×8

4 x Screw M4×16

4 x Nut M4
Step 10
Step 11

3 x Mo R23 Adapter

1 x Bracket 3 x 3

2 x Screw M4 x 8

4 x Plastic Rivet 4080
Step 12

1 x Me Baseboard

1 x Base Board Plate

2 x Screw M4-8

4 x Plastic Rivet 4100
Step 13

1×Screw M4×14

1×Rubber band
Step 14

Limit Switch 1 → Slot 2 on Me R2S Adapter 1 → 6PSC R2S Cable 20cm → Me Baseboard Port 3

Limit Switch 2 → Slot 1 on Me R2S Adapter 1

Limit Switch 3 → Slot 2 on Me R2S Adapter 3 → 6PSC R2S Cable 50cm → Me Baseboard Port 6

Limit Switch 4 → Slot 1 on Me R2S Adapter 3

9g Micro Servo → Slot 2 on Me R2S Adapter 2 → 6PSC R2S Cable 50cm → Me Baseboard Port 7

42BYG Stepper Motor A (X-Axis) → Me Stepper Driver 1 → Me Baseboard Port 1

42BYG Stepper Motor B (Y-Axis) → Me Stepper Driver 2 → 6PSC R2S Cable 20cm → Me Baseboard Port 2
After you finishing this step, congratulations! You can move forward to the next stage – using mDraw or Benbox to control your robot. Here you go the introduction of software mDraw and Benbox.

V. Software

XY plotter V2.0 can be controlled with two software: mDraw and Benbox.

Compared to above figure, the main differences between software mDraw and Benbox are: Benbox software supports laser grayscale engraving, while mDraw has relative poor function, with easy and simple the operation. Depending on your drawing requirements, please select the software on your own.
VI. Use mDraw Software

a). Introduction to mDraw

mDraw is an open-source software developed by Makeblock.

Compatibility: mDrawBot (mScara, mCar, mEggBot, mSpider), XY Plotter kit (servo mode, laser mode)

OS Environment: Windows, Mac, Linux

Supported File Type: *.svg, *.bmp (convert to *.svg)

b). Installation

mDraw software is the green package, which does not need to install, and can run by directly opening it. (The download address: https://www.dropbox.com/s/dszcqaea3901403/mDraw%20V1.1%2020150709.zip?dl=0)
c). **Button Function in Main UI**

Click in the Drawing zone, robot will move accordingly. Drag the loaded SVG graphics in drawing zone could adjust the size and position of graphics. Size can be adjusted by inputting values in the right-down window directly.

Load in BMP file, mDraw will pop out a dialogue for converting SVG file. Follow the prompts, BMP file can be converted into SVG file.

Load in SVG file(\mDraw Examples of Material\mSpider\HatsuneMiku.svg), drawing is as follows.
d). Setting

a. Check that the wiring is correct. Use USB to connect computer (Note: If you use Bluetooth, please install the Bluetooth receiver driver on your computer, please use Port 5 for Bluetooth).

b. Switch child software to XY, select the correct COM port and connect, and then click Burn firmware (Note: when you use for the first time, you need to click Update Firmware to upgrade and ensure the normal operation of XY Plotter V2.0.)
c. Click button □ to enter the setup window. Generally default value is fine, you can revise parameters per your own necessary.
d. Click Pen button to switch to the servo pattern, and then calibrate Pen Down and Pen Up parameters.

Input value of Pen Up and Pen Down in mDraw, and observe the movement of mDrawBot. If the feedback is correct as below, that means your settings are correct.

![Pen Up and Pen Down](image)

Note: the default value here is only for reference. In actual use please apply the value you got after adjusting the servo arm.

e. Please put the imported graphics files in the rectangular area, and will show abnormal if it exceeds the scope of the drawing.

f. Click icon before making the drawing, and reset to zero.

g. When everything is ready, you can import graphics in SVG format (\mDraw Examples of Material\mSpider\HatsuneMiku.svg), adjust the position. Set servo pen up parameters shown in the upper right, then click Start to start drawing. The rendering results are shown as below.

1If the servo arm cannot reach to below angle, please uninstall the servo arm to re-adjust the installation angle. Please adjust the tightness of rubber band if necessary.
VII. Use Benbox Software

a). Benbox features introduction

The current Benbox software version only supports Windows systems. It also supports servo mode and laser mode. The prominent feature contains supporting gray engraving, and you can edit graphics and text within the software.

VIII. Software downloading.

Download address for software package (online download address: https://www.dropbox.com/s/32ti2imemn4tpw0/benbox-3.7.99-20150627.zip?dl=0)

a). Benbox software installation
(1) Follow the prompts to install the software, the interface is shown as below after completing the installation.

![Software Interface](image1)

(2) The firmware used by Makeblock Orion motherboard is located under the installation directory address. We will use it later.

![Firmware Directory](image2)
b). Main interface function
IX. Meaning of each parameter in the Benbox software.

a). Parameter setting area

1. The low light intensity: minimum is 0, maximum is 255. Under normal circumstances, the default size is 16.
2. The laser intensity: minimum is 0, maximum is 255. Under normal circumstances, the default size is 255.
3. The step speed (mm / min): Stepping speed. The minimum is 0 and the maximum is 3000. If the vector drawing speed sets to 1500-3000, the waiting time for penup and down can be set to 50-250ms.
4. Wait time (ms): waiting time for penup and down.
5. Drawing mode: progressive scan, Z character scanning, contour scanning (Note: contour scanning only supports BMP format and DXF format)
6. Non-continuous, continuous, laser and servo mode (The differences among above modes are nuances, and you can understand its functions after you have tried multiple times)

b). Drawing editing area

1. Define origin location
2. Draw straight line
3. Insert round
4. Insert arc
5. Insert bezier curve
6. Insert text
7. Inserting graphic
8. For the inserted graphic elements, you can edit them after selecting, and use Delete key to delete the graphic elements.
9. Click Purple box in the upper right corner of inserted graphics to pop up the editing dialog box of graphics, and perform inverting color and direction operation, adjust color and weathering.
c). Operating Area

1. Open file: the supporting bitmap file formats are JPG, PNG, GIF, BMP and other formats; the supporting vector formats are DXF, which are vector drawing mode. (Notes: BMP format also can recognize the outline, and the vector drawing mode can be used.)

2. Move the pen holder up and down and right and left, but the moving distance shall set the number of stepping

3. Pen up rendering preview

4. Pen down rendering preview

5. Servo parameter setting test

6. Walking frame, which is used to preview and test the size and position of drawing image

7. Start/Pause drawing

8. Stop drawing

9. G-code control, and ordinary users will not use it

10. Upgrading firmware

d). Preview area

1. You can view engraved graphical and progress of engraved graphical in preview area in real-time

2. Zoom up and down the graphics with scroll wheel. Click middle mouse button to restore the default position of graphics.

3. You can zoom in and out the graphic by dragging the graphic.

4. Left-click anywhere in the graphic and locate the drawing origin. The default processing origin is located at the top left corner

5. When the machining origin is the motherboard power button, the stopping position of the laser is the machining origin. If you do not change the default processing origin, the origin of the machine is processing origin.
X. Software initialization setting

a). Check connections

1. Refer to the electronic circuit connection section. Note: Two stepper drives are subdivided into: HHL

b). Upgrade the firmware (Require to burn when using for the first time)

1. Click icon to display the following interface

![Update Firmware interface](image)

2. Select the correct serial port, here is COM27.

3. Select board model. Makeblock Orion motherboard chip is UNO (328p) [If you are using a MakeblockMe_Baseboard motherboard, the chip model is Leonardo (32u4)].

4. Select the firmware, enter the installation address to search [my installation address is the D drive, so the location of firmware address is D drive. D:\Program Files\Benbox\3.7.99\roms].

![D:\Program Files\Benbox\3.7.99\roms](image)

5. Click to begin updating the firmware. If update success symbol appears, it indicates that the update is successful. (If it fails, check the serial port)
c). Calibrate the setting of pen-agency and pen up and down parameters

1. Move the pen to the right position, open the motherboard power.

2. Click the button to enter the parameter setting area. Make the setting according to the following parameters, and click to enter the Servo mode.
3. Enter 0 in the Pen Up (or 30 or 60, the size range is 0-180), and then click to observe whether the pen is lifted off the paper. I've found that the value 0 meets the penlift requirements, so it is set to 0.

4. Similarly, Enter 0 in the Pen down (or 30 or 60, the size range is 0-180), and then click to observe whether the pen is located under the paper. I've found that the value 60 meets the requirements of placing pen, so it is set to 60.

5. Click to test the result of pen up and down. If you find that the pen up and down do not meet the requirement, please change the parameters. While the servo response time may be extended, it can be set to 50-250ms.

Note: the default value here is only for reference. In actual use please apply the value you got after adjusting the servo arm.
XI. Vector DXF drawing example - Iron Man Drawing

1. Open Directory ... and find Man.bmp file in the \Laser upgrade pack download\BenBoxExamples of material, and set the following parameter. The PenUp and PenDown are used for reference, the value for each machine will be different. (Note: please use)

2. Check the power, penup setting, serial port settings, click function, observe drawing range and adjust the position.
3. Click to start drawing.
4. The drawing renderings are shown as below.
XII. FAQS

Q1. Why my PC can't install the driver of the Makeblock Orion successfully?
A: If your PC can't install the driver for Makeblock Orion automatically, please manually download it and install.
Download link: http://learn.makeblock.cc/driver_installation/

To check whether the driver has been installed successfully:
1. Open Run dialog (win + r)
2. Input `devmgmt.msc` to open the Device Management.
3. Check the "COM X" (X=2.3.4· · ·). If the driver hasn't been installed successfully, you will see a question mark or an exclamatory mark.

Question 2. Why control software sometimes fails to respond or crash?
A: Currently supported platforms contain WINDOWS system. If the software crashes or fails to respond, please restart the software. For image that its resolution exceeds 96PPI, the software will respond very slowly or does not respond, please use image processing software to reduce the resolution. If the image is too large, it will also cause the software to respond very slowly, please try not to draw the bitmaps with large size. If you need to draw relatively large or complex images, please be patient to wait for software response, and its response time is 10min-30min. The largest drawing area of this drawing machine is 310mm × 390mm.

Question 3. Why it takes much longer time to open DXF?
A: Because the algorithm is more complex, and curve resolving will take much longer time, so it takes a long time to open the file, please be patient until progress bar is finished.
Question 4. What is the default setting of mDraw and BenBox software stepper driver module?
A: The following settings will ensure better accuracy, and the size of setting drawn graphics is the actual graphics size.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full speed</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1/2 Subdivision</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1/4 Subdivision</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>1/8 Subdivision</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>1/16 Subdivision</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Question 5. How to download data and 3D models?
Answer: You can get the appropriate information download address via visiting link interface of our official website www.makeblock.cc.
1. http://learn.makeblock.cc/

Question 6. How to share your work?
Answer: You can upload and share your work here.
http://forum.makeblock.cc/category/showcase

Question 5. How to contact us?
Answer: You can contact our team via the following contact method.
www.makeblock.cc
https://www.facebook.com/Makeblock?ref=br_tf
https://plus.google.com/102486511775733872783/posts
XIII. Thanks!

Thanks to the software provided by our Partner Benbox companies, we can quickly launch this XY plotter V2.0 platform-based laser engraver upgrade pack. We welcome all companies and individuals to developing products in our platform, including software, electronics, mechanical parts, kits etc. If you have any good ideas, please contact us.

Our E-mail: support@makeblock.cc

Makeblock. Construct Your Dreams!